Basics of Polymerase Chain reaction (PCR) - II

Agenda

	Basics of Molecular Biology		
PCR Basics Part I	Definition of PCR		
	The phases of PCR		
	Definition of Real Time PCR		
PCR Basics Part II	Qualitative Real time PCR		
	Quantitative Real Time PCR		
PCR Basics Part III	Definition of Melting Temperature		
	Melt Curve Analysis		

Real Time PCR

Real-Time PCR (RT-PCR)

- Real-time PCR is a regular PCR reaction using an additional oligonucleotide marked with a fluorescent molecule : It is called a probe.
- The probe is a single –stranded DNA, matching a target sequence
- The fluorescent probe emits a fluorescent signal when activated by hybridization
- One copy of target DNA activates one probe molecule, hence the fluorescence signal will be directly proportional to the number of copies of target DNA generated
- Examples of probes used for real-time PCR: Tagman, Molecular beacon, Scorpion probes...

© 2017-2020 Cepheid - All rights reserved - 301-8526, Rev B, November 2020

Probe

FRET Technology:

- Fluorescence Resonance Energy Transfer (FRET) is a distance-dependent interaction between two dye molecules.
- Excitation energy is transferred from a donor molecule to an acceptor molecule without emission of a photon.
- FRET has many applications, including PCR.

Taqman probe

- A Taqman probe is a short oligonucleotide (15-30 bases long) probe labeled with a fluorescent dye at the 5' end and a quencher at the 3' end.
- As long as the reporter and the quencher are in close proximity, the quencher will absorb the fluorescence from the reporter
- The probe is designed by DNA sequence to anneal to the target
- During the extension phase of PCR, the Taq polymerase will degrade the probe
- This will physically separate the reporter and quencher, allowing fluorescence to be emitted and measured

1 free fluorophore/

DNA amplicon

Taqman Probe

Taqman probe

Taqman probe

- A molecular beacon probe is an hairpin-shaped molecule that consists of a fluorophore (reporter) and a quencher
- The probe sequence is about 17–21 bases long. The Stem sequence to form a stable duplex that is 5-8 bases long
- When free in solution, the two extremities stands close, leading to quenching of fluorescence.
- In presence of target DNA, the probe anneals to the target and separates the fluorophore and <u>quencher</u>, leading to emission of fluorescence
 2 © 2017-2020 Cepheid - All rights reserved - 301-8520; Rev B, November 2020;

Sloppy Molecular Beacon

 Sloppy molecular beacons possess relatively long probe sequences (about 30-40 bases long), enabling them to form hybrids with amplicons from many different species despite the presence of mismatched base pairs.

Scorpion probe

The probe sequence should be 17–27 bases long.

27 © 2017-2020 Cepheid - All rights reserved - 301-8526, Rev B, November 2020,

Changes in fluorescence during PCR

 The amplification curve consists of 4 phases :

Definition of Ct – based on threshold

 Threshold cycle (Ct): the first cycle which crosses a defined fluorescence threshold

-This cycle value can be fractional

Validation criteria of a PCR: Ct range and end-point fluorescence

- Ct range
 - -It is the acceptable range for a Ct value
 - -It is limited by Ct_{min} and Ct_{max}
- End point fluorescence
 - -The fluorescence value at the end of the PCR (Plateau)

For Xpert tests, outside the range, the amplification curve is not validated : the result cannot be provided

- Multiplex PCR is the amplification of multiple DNA targets simultaneously
 - -Each target has its own set of primers
 - Each target is detected or quantified by its own probe, labeled with a different dye, detected at a specific fluorescence wavelength
- When designing a multiplex PCR, competition between targets must be avoided

Detection of multiple dyes – 6 dyes until 2020

- Different dyes (reporters) are selected
- They are excited and they emit at distinct wavelengths

Analyte	Reporter	Excitation (nm)	Emission (nm)	
Target 1	Dye 1	375-405	420-480	
Target 2	Dye 2	450-495	510-535 🔺	
Target 3	Dye 3	500-550	565-590	
Target 4	Dye 4		665-685	
SPC	Dye 6	630-650	>700	
Target 5	Dye5	555-590	606-650 🜟	

Detection of multiple dyes – 10 dyes now

Different dyes (reporters) are selectedThey are excited and they emit at distinct wavelenghs

		iCore Detection					
	iCore Optical Channels	Blue + IR (420-477 nm + > 700 nm)	Green + Deep Red (510-535 nm + 660-680 nm)	Yellow (565-585 nm)	Red (620-645 nm)		
	UV (400 nm)	CF1					
iCore Excitation	Blue (470 nm)		FAM	FAM CF7 (FAM-CF3)			
	Green (520 nm)	CF10 (CF3-CF6)		A532 (CF3)	CF8 (CF3-CF4)		
	Yellow (574-584 nm)				TxR (CF4)		
	Red (635 nm)	CF6	A647 (CF5)				

Quantitation by Real Time PCR

0

0

Quantitation

- Absolute quantitation : result reported as a concentration (copies/mL, IU/mL, etc...):
 Xpert HIV-1 VL and Xpert HCV
- Relative quantitation : result reported as a ratio: Xpert BCR-ABL

HIV-1 VL viral load decrease on ART (other method than GeneXpert). Graphic : hivbook.com

10000000

1000000

Absolute quantitation using external standards

- 1. Prepare dilutions of a sample containing the target DNA at a known concentration.
- 2. These dilutions will be run along with your unknown sample, each in a separate tube
- 3. For each dilution, the Ct is reported
- 4. The standard curve is drawn: Ct versus concentration
- 5. The Ct of the unknown sample is used to extrapolate its concentration from the standard curve

Within the linear range of concentration, 2 standards are sufficient

Absolute Quantitation using internal standards.

For Xpert HIV-1 VL :

2 standards are used to calculate the concentration of the sample:

- 1 high standard (IQS-H) = 10⁶ copies/mL
- 1 low standard (IQS-L) = 10³ copies/mL
- Based on Cts and known concentration of each standard and the Ct of the unknown sample, the concentration of the unknown sample will be calculated by the GeneXpert software.

Test Result	Analy	te Result	Detail	Errors	History	Support		
Analyte Name		C	t	En	ldPt	Analyte	Result	Probe Check Result
	HIV-1		31.1		480		POS	PASS
	IQS-H		24.6		253		PASS	PASS
	IQS-L		34.1		586		PASS	PASS
600 9400 910 929 939 9400 910 9200 910 9200 910 910 910 910 910 910 910 910 910 9	+	; 10	+ + 20 (Cycles	30	40		Legend HIV-1; Primary IQS-H; Primary IQS-L; Primary

Calculation of the sample concentration

Cepheid

Relative quantitation with Real Time PCR (Ex: Xpert BCR-ABL)

- Relative quantitation measures the level of a target and expresses it relative to the level of an internal control (reference gene)
- The reference gene can be endogenous. As such, it can also ensure that sufficient sample is used in the test.
- Because of its low variability, the endogenous control can also be used to indicate PCR inhibition.

POSITIVE [1.54% (IS) and MR1.81]

Example of an Xpert BCR-ABL Ultra test result

Conclusion

RT-PCR is:

- Fast
- Sensitive
- Precise
- Easy to perform
- Can be quantitative

"

Science consistently produces a new crop of miraculous truths and dazzling devices every year.

Kary Mullis

Thank You.

Cepheid.

GeneXpert

www.Cepheid.com

